Dextroamphetamine is a central nervous system (CNS) stimulant and an amphetamine enantiomer[note 1] that is prescribed for the treatment of attention deficit hyperactivity disorder (ADHD) and narcolepsy.[3][20] It is also used as an athletic performance and cognitive enhancer, and recreationally as an aphrodisiac and euphoriant.
100 Questions amp; Answers About Attention Deficit Hyperactivity Disorder (ADHD) In Women And Girls
Dextroamphetamine is used to treat attention deficit hyperactivity disorder (ADHD) and narcolepsy (a sleep disorder),[3] and is sometimes prescribed off-label for depression and obesity.[20]Long-term amphetamine exposure at sufficiently high doses in some animal species is known to produce abnormal dopamine system development or nerve damage,[24][25] but in humans with ADHD, pharmaceutical amphetamines at therapeutic dosages appear to improve brain development and nerve growth.[26][27][28] Reviews of magnetic resonance imaging (MRI) studies suggest that long-term treatment with amphetamine decreases abnormalities in brain structure and function found in subjects with ADHD, and improves function in several parts of the brain, such as the right caudate nucleus of the basal ganglia.[26][27][28]
The evaluation of the cognitive control in children with attention-deficit hyperactivity disorder through the use of oculomotor tests reveal that this group showed susceptibility to peripheral distractors and deficits in response inhibition. All subjects were found to have intact sensorimotor function and working memory.
This study tests a multiple cognitive deficit model of reading disability (RD), attention-deficit/hyperactivity disorder (ADHD), and their comorbidity. A structural equation model (SEM) of multiple cognitive risk factors and symptom outcome variables was constructed. The model included phonological awareness as a unique predictor of RD and response inhibition as a unique predictor of ADHD. Processing speed, naming speed, and verbal working memory were modeled as potential shared cognitive deficits. Model fit indices from the SEM indicated satisfactory fit. Closer inspection of the path weights revealed that processing speed was the only cognitive variable with significant unique relationships to RD and ADHD dimensions, particularly inattention. Moreover, the significant correlation between reading and inattention was reduced to non-significance when processing speed was included in the model, suggesting that processing speed primarily accounted for the phenotypic correlation (or comorbidity) between reading and inattention. This study illustrates the power of a multiple deficit approach to complex developmental disorders and psychopathologies, particularly for exploring comorbidities. The theoretical role of processing speed in the developmental pathways of RD and ADHD and directions for future research are discussed. 2010 The Authors. Journal of Child Psychology and Psychiatry 2010 Association for Child and Adolescent Mental Health.
Twenty-five percent of children with ADHD also have an anxiety disorder (AD). As per Quay and in light of Barkley's model, anxiety may have a protective effect on cognitive deficits and behaviors associated with ADHD. This study aimed to evaluate the effect of treating AD on cognitive deficits and behaviors associated with ADHD in children with both disorders. Twenty-four children with ADHD and AD were divided into two groups: treatment for AD, and wait list. Participants were assessed at pre-treatment, post-treatment, and 6-month follow-up with the ADIS-C, the CBCL, and neuropsychological measures. The results revealed a significant improvement in automatic response inhibition and flexibility, and a decrease in inattention/hyperactivity behaviors following the treatment for AD. No significant differences were observed in motor response inhibition, working memory, or attention deficits. The results do not seem to support Quay's hypothesis: treating AD did not exacerbate cognitive deficits and behaviors associated with ADHD in our sample.
Little is known about neuropsychological and social-cognitive function in patients with pediatric bipolar disorder. Identification of specific deficits and strengths that characterize pediatric bipolar disorder would facilitate advances in diagnosis, treatment, and research on pathophysiology. The purpose of this study was to test the hypothesis that youths with bipolar disorder would perform more poorly than matched healthy comparison subjects on measures of social cognition, motor inhibition, and response flexibility. Forty outpatients with pediatric bipolar disorder and 22 comparison subjects (no differences in age, gender, and IQ) completed measures of social cognition (the pragmatic judgment subtest of the Comprehensive Assessment of Spoken Language, facial expression recognition subtests of the Diagnostic Analysis of Nonverbal Accuracy Scale, the oral expression subtest of the Test of Language Competence), inhibition and response flexibility (stop and stop-change tasks), and motor inhibition (continuous performance tasks). Pediatric bipolar disorder patients performed more poorly than comparison subjects on social-cognitive measures (pragmatic judgment of language, facial expression recognition) and on a task requiring response flexibility. These deficits were present in euthymic patients. Differences between patients and comparison subjects could not be attributed to comorbid attention deficit hyperactivity disorder. Findings of impaired social cognition and response flexibility in youths with pediatric bipolar disorder suggest continuity between pediatric bipolar disorder and adult bipolar disorder. These findings provide a foundation for neurocognitive research designed to identify the neural mechanisms underlying these deficits.
Impairment in social cognition is an established finding in autism spectrum disorders (ASD). Emerging evidence suggests that attention-deficit/hyperactivity disorder (ADHD) might be also associated with deficits in theory of mind (ToM) and emotion recognition. However, there are inconsistent findings, and it has been debatable whether such deficits persist beyond childhood and how similar social cognitive deficits are in ADHD v. ASD. We conducted a meta-analysis of social cognition, including emotion recognition and ToM, studies in ADHD compared with healthy controls and ASD. The current meta-analysis involved 44 studies comparing ADHD (n = 1999) with healthy controls (n = 1725) and 17 studies comparing ADHD (n = 772) with ASD (n = 710). Facial and vocal emotion recognition (d = 0.40-0.44) and ToM (d = 0.43) abilities were significantly impaired in ADHD. The most robust facial emotion recognition deficits were evident in anger and fear. Social cognitive deficits were either very subtle (emotion recognition) or non-significant (ToM) in adults with ADHD. Deficits in social cognition, especially ToM, were significantly more pronounced in ASD compared with ADHD. General cognitive impairment has contributed to social cognitive deficits in ADHD. Performance of individuals with ADHD on social cognition lies intermediate between ASD and healthy controls. However, developmental trajectories of social cognition probably differ between ADHD and ASD as social cognitive deficits in ADHD might be improving with age in most individuals. There is a need for studies investigating a potential subtype of ADHD with persistent social cognitive deficits and exploring longitudinal changes in social cognition during development.
Research illustrates cognitive deficits in children and younger adults with attention-deficit/hyperactivity disorder (ADHD). Few studies have focused on the cognitive functioning in older adults. This study investigates the association between ADHD and cognitive functioning in older adults. Data were collected in a cross-sectional side study of the Longitudinal Aging Study Amsterdam (LASA). A diagnostic interview to diagnose ADHD was administered among a subsample (N = 231, age 60-94). ADHD symptoms and diagnosis were assessed with the Diagnostic Interview for ADHD in Adults (DIVA) 2.0. Cognitive functioning was assessed with tests in the domains of executive functioning, information processing speed, memory, and attention/working memory. Regression analyses indicate that ADHD diagnosis and ADHD severity were only negatively associated with cognitive functioning in the attention/working memory domain. When adjusting for depression, these associations were no longer significant. The study shows that ADHD in older adults is associated with lower cognitive functioning in the attention/working memory domain. However, this was partly explained by depressive symptoms.
Affect recognition deficits found in individuals with attention-deficit/hyperactivity disorder (ADHD) across the lifespan may bias the development of cognitive control processes implicated in the pathophysiology of the disorder. This study aimed to determine the mechanism through which facial expressions influence cognitive control in young adults diagnosed with ADHD in childhood. Fourteen probands with childhood ADHD and 14 comparison subjects with no history of ADHD were scanned with functional magnetic resonance imaging while performing a face emotion go/no-go task. Event-related analyses contrasted activation and functional connectivity for cognitive control collapsed over face valence and tested for variations in activation for response execution and inhibition as a function of face valence. Probands with childhood ADHD made fewer correct responses and inhibitions overall than comparison subjects, but demonstrated comparable effects of face emotion on response execution and inhibition. The two groups showed similar frontotemporal activation for cognitive control collapsed across face valence, but differed in the functional connectivity of the right dorsolateral prefrontal cortex, with fewer interactions with the subgenual cingulate cortex, inferior frontal gyrus, and putamen in probands than in comparison subjects. Further, valence-dependent activation for response execution was seen in the amygdala, ventral striatum, subgenual cingulate cortex, and orbitofrontal cortex in comparison subjects but not in probands. The findings point to functional anomalies in limbic networks for both the valence-dependent biasing of cognitive control and the valence-independent cognitive control of face emotion processing in probands with childhood ADHD. This limbic dysfunction could impact cognitive control in emotional contexts and may contribute to the social and emotional problems associated with ADHD. PMID:24918067 2ff7e9595c
Comments